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Logical graphs -
how to map mathematics

Hakan LENNERSTAD, Karlskrona (Sweden)

Abstract: A logical graph is a certain directed graph with
which any mathematical theory or proof can be presented — its
logic is formulated in graph form. Compared to the usual ver-
bal “narrative” description, the presentation usually gains in
survey, clarity and precision.

A logical graph formulation can be thought of as a derailed
and complete map over the mathmatical landscape. The main
goal in the design of logical graphs is didactical: to improve the
orientation in a mathematical proof or theory for a reader, and
thus to improve the access of mathematics.

Kurzreferat: Ein logischer Graph ist ein bestimmter gericht-
eter Graph, durch den eine mathematische Theorie oder ein
mathematischer Beweis dargestellt werden kann. Im Vergleich
zu der iiblichen verbalen, ,erzihlenden® Beschreibung, ge-
winnt diese Darstellung in der Regel an Ubersicht, Klarheit
und Prizision.

Die Formulierung mithilfe eines logischen Graphen kann
als detaillierte und vollstindige Abbildung iiber der mathema-
tischen Landschaft aufgefait werden. Das Hauptziel, logische
Graphen zu entwickeln, ist cin didaktisches: die Orienticrung
in einem mathematischen Beweis oder einer mathematischen
Theorie zu verbessern und damit auch den Zugang zur Mathe-
matik.

ZDM-Classification: E30, E40

“We have not begun to understand the relationship
berween combinatorics and conceptual mathematics.”
J. Dieudonné, A panorama of pure mathematics (1982)

A logical graph is a way of notating classical logic as a
directed graph, which allows a graphical presentation of
any mathematical proof or theory. In logical graph form
the reader obtains an immediate view over the logic,
without losing any detail information. The writer has
much freedom in the design of logical graphs — for ex-
ample to choose detail exposition — in order to obtain
maximum clarity of presentation.

We first give the formal definitions, and then discuss their
use to provide easier understanding of mathematics.

1. Definitions

Definition 1: A logical graph is a directed graph with
nodes of two kinds, called propositions and definitions,
and edges of two kinds, implications and constructions.
Each proposition node contains at least one statement,
new notation may also be introduced simultancously.
Each proposition node A represents the statement
A A AAL = A, where Ay, ..., Ay are all implication
predecessors of A.

Definition nodes contain no statements, but intro-
duces new notation. A construction edge from node B,
usually a definition node, to the node C denotes that in
C some notation defined in B is explicitly used. No im-
plication edge ends at a definition node, since we never
prove definitions. (See all examples)

We nced a few more formal tools to justify the claim
that logical graphs can be used to present any proof.

Informationen

Sometimes we make assumptions within a proof. One
such case is proof by contradiction. Another case 1s
when we take care of different cases with different proof
methods. This calls for a few more definitions, of which
the first is the following:

Definition 2: A logical subgraph is a subgraph of a logi-
cal graph having one or more assumptions stated in one
entrance proposition node. An implication may only
cross the boundary of a subgraph from the outer side to
the inner side. (See Examples 1 and 3)

Definition 3: A proof by contradiction is a subgraph of
a logical graph with one entrance proposition node A,
the assumption, and one exit proposition node False,
the contradiction. Thus A is established. With a slight
abuse of notation this is denoted as implications from
the entrance A and from the exit False, as if A(False | —
A. Inferences may point from outside the proof by
contradiction to a proposition within, but no impli-
cation may point in the reverse direction. (See Exam-

ple 3)

A proof by cases may consist of one subgraph for each
case. Suppose that we want to prove A, and make as-
sumptions Cy, ..., Ci where C; v .. v Cy & True. Here
we obtain k subgraphs each with entrance node C; and
exit node A. We thus prove C; = Aforalli: 1 <1<k,
and A follows.

Every case does not need to be written out as a sub-
graph. In the proof of the Hahn-Banach theorem, the
case |l g Il =1 contains the main difficulties. The case
llgll = 0is simple enough to be treated in one proposi-
tion node only, and perhaps this is appropriate also for
the case ll g Il > 0, Il g Il # 1. Any presentation method
should provide easy notation for common and useful
ways of argument; it is important not to limit the free-
dom of expression unnecessarily. The main goal of logi-
cal graphs is clarity and easy expression.

Inferences are not allowed between subgraphs, since
we in different subgraphs have different sets of assump-
tions. Furthermore it is clearly possible to have sub-
graphs in a subgraph. By defining the inner side of the
boundary in the natural way, we may summarize this in
a border crossing rule, which is part of the definition of
a logical subgraph:

Border crossing rule: An implication may cross any
number of boundaries, but every crossing must take
place from the outer side to the mner side.

2. Comments on the definitions

“and” and/or “or”. Definition 1 is enough to present a
theory. Note that, since implication edges together form
an implication statement, all implication edges ending at
the same proposition should be viewed as a group.

The “and” and “or” operations can casily be denoted
as the following example 5. However, the logical con-
nections in proofs and theories are usually formulated
with the operation “and”; we have a set of assumptions,
and if all are true a resulting statement is also true.
Therefore “and” is chosen as standard notation.

Theory graphs and proof graphs. When used to pre-
sent a theory, the proposition nodes arc lemmas and the-
orems. Axioms are in principle definitions with no in-
coming constructions. However, explanations of the
axioms may require more primitive definitions. For
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proposition

I A is an invertible nxn matrix.

Matrix multiplication
1s associative:

definition 1~ 777 t
B=A"l

BT

implication ——»

construction ----- >
AC=A has the /A('BA)=A
solution C=I. N
R R S i
| * Let B be the nxn : AB=l
. matrix where b; is Z/'
. the i:th column. i
There are unique solutions b;:
Ab; =y, i=l....n.
AC=Y has \ _____________
a unique Let y, be the i:th :
solution C  |n linear | column of 1. :
for any nxn |Systems f...... e
matrix Y. P !

A S

' (A invertible)

(AB)C = A(BC)

' A”lis an : /

\ inverse matrix
‘o Aif AAT = ! \ /
AlA=1 existence

x = A'ly is a solution
to AX =y since:

Ax=A(Aly) =
(AA Yy =Ty =vy.
If A has an :
; o e uniqueness
inverse, it is
unique. If Xy 1s any solution,
S0 Axy =,
then

Al(Axy) = Ay,
hence x5 = A'ly.

v ¥

A is a nxn matrix, and Ax = y has a unique solution for anyy.

Example 1. Displayed proof: If A is a square matrix, A is invertible if and only if Ax=y has a unique solution x for every y.

example, one may argue that the axioms in group theory
relies on the function concept.

When used to present a mathematical proof, the nodes
are steps in the proof, chosen as usual by appropriate de-
gree of explicity. Of course, the basic rule here is the one
of Aristotle: each step should be evident. When used to
present proofs, there is a set of proposition nodes which
1s special: the assumptions — these have no incoming im-
plications. Another special set is the set of conclusions. It
is recommended to make these special proposition nodes
extra visible, c.g. by bold frames. In definition nodes it is
further recommendable to underline new notation and
new terms, especially in the case of theory graphs.

Example 1 clearly presents two proofs, since the theo-
rem states an “if and only if”-result; the role of being
premise and conclusion is interchanged in the two
proofs. The direction of the arrows makes it clear what
1s premise and what is conclusion,

Goal: maximal clarity. The goal of logical graphs is not
to atomize arguments as far as possible, to make every-
thing into a graph which can be transformed in this way.
The overall goal is clarity of argument, which sometimes
is served best by allowing several components, i.e. propo-
sitions and definitions, in the same proposition node.
This does not disturb the logical structure, since if P and
Q are propositions, also PAQ is of course a proposition.
The constructor has a lot of freedom in logical graph de-
sign, just as in narrative proofs. What is evident and what
is not evident is of course very dependent on the audi-
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ence. As with narrative presentation, with logical graphs
one can freely choose any degree of detail exposure.

What is statement, what is definition? In the examples
provided here one can observe that the distinction be-
tween definitions and propositions is not completely
sharp; the dominating character is indicated in the
graphs. It is sometimes questionable whether a certain
definition is possible, whether a well defined object is
defined. If so, it is also a proposition. Conversely, pro-
positions often naturally introduce new notation. One
example is the verb “take” which is the proposition
“there exists”, but is usually intended to introduce a
name for a mathematical object. If the existence is at
stake, such a node should be a proposition node.

Earlier matter. Earlier results or definitions which are
needed in a proof or included as reminders appear with
one side missing. There are some examples of this in the
graphs in this text.

Hypertext. Partitioning a proof in subproofs suggests
the use of hypertext. The reader could then click on a
difficult step and obtain a subgraph displaying the argu-
ments by degrees with more details and more explana-
tion.

Relation between definitions. Constructions are cer-
tainly a part of mathematics. If notation from definition
D, is used in definition D,, there is clearly a specific for-
mal relationship between the two definitions. However,
there is no commonplace mathematical notation for this
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Theorem 6.3.1
p is prime = all elements in Z,
except O are invertible.

Theorem 6.3.1 f

An element r € Z,, is invertible if r
and m are relatively prime.

Theorem 1.7

a and b relatively prime =
dAm, neZ: ma+nb=1

63 4. aP0=a, a®] =aqa

An element r €Z,, is invertible if .

n

Informationen
Fermat’s small theorem, 6.3.2
| Hpaxthenx?' =1 (mod p).
Theorem 6.2
Rules for Z,,. Suppose a, b, c € Z,,,. Then:
l.a®beZ, and a®b eZ, (closed)
— \ 2. a®b = b®a, a®b = b®a. (commut.)
3. (a®b)®c = a®D(bDc),
(a®b)®c = a®(b&c) (assoc.)
(neutral el.)
5.a ®(b®Dc) = a®bPa®c (distr.)
6.VaecZ,3-ael, a®(-a)=0 (add. inverse)

. there is an x € Z,,, such that r®x=1.
* We call x the inverse of r. :

T ! Operations @ and ® on Z,,: .
I N SO ! [y, @ [k, = [n+k],, :
Z,, = {[n],)= set of equivalence '+ [n],, ® [k, = [nk],,, '
' classes. Note: ; s e & & ST %  § ¥
: [nl,, = [n+m],,= [n+2m],= ... i Theorem 6.1
1Z,|=m. Suppose x| =y (mod n) and x; = y;
(mod n). Then:

¥ 1. x| + xy =y + yp (mod 1)
6.1 2. x; xp =y yp (mod n)
Congruence is an equivalence 6.1 4
relation. Equivalence classes:
[n),, = {allk € Z: k=n (mod m)}. ' The integers x and y are congruent modulo n if |
. they have the same remainder when divided by 7. :

+ (Alternatively: x - y divisible by n.)
\ . Written: x = v (mod n). :

Example 2. Displayed theory: Basics of modular arithmetic. Numbering 1s according to corresponding course book.

relationship. It is interesting to note how a different but
cquivalent formal representation bring different ideas to
the surface. This is of course an observation about how
the human mind works.

Proofs are graphlike. We all know that the sequence of
implications from assumption to result rarely is straight
and branchfree like a flag pole, it is rather like a bush or
a jungle. A graph is a very natural concept to catch this
reality.

Do we need city maps? On the other hand, a lecturer has
to present a theory linearly, since the time is linear, at
least locally. One could then ask: should mathematical
texts be written lectures, reflecting the shape of time, or
should written presentations of mathematics reflect the
structure of its content? A similar question 1s: Do we
really need city maps? Would we find the right spot in a
city easter if we instead use a collection of purely verbal
tour descriptions?

3. Advantages of logical graphs

1) More complete. In a logical graph all “hence”, “it fol-
” “thus we obtain” and similar synonymous ex-
pressions, far to few to avoid repetition, are replaced
by implication arrows. In a narrative text we cannot
explicitly mention all implications. Doing this every
time would lead to a very heavy account, in fact ob-
structing the content. The clumsiness of natural lan-

lows

guage, for mathematical purposes, forces narratively
presented proofs to be rather incomplete. As de-
scribed, in logical graph form one is free to keep any
degree of incompleteness, whatever serves clarity.

2) More liberty for the reader. When reading a proof
presented by a logical graph, the reader is free to
choose if to start from the hypothesis and contem-
plate the starting reformulations, or to start in the
other end, from the result. In a narratively presented
proof, mnstead the writer decides in which order to
read the proof. Certainly, after having read through a
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Let X be a real normed linear space, and let M be a subspace of X.
Let f be a bounded linear functional on M.

L £ and £ are defined on M” and M |
s respectively, {7 is an extension of ” on -

4 Ler My be a non-trivial subspace |
: of X and g any functional on My, :

M7 IEM M, fly=fand I £ I=11F0.: £ ool L L
................ e : '___é-____,_-___“
________________ Y sy m o “‘ HXOEX-MOA ELCIM]:{X‘F;\,X(),E

+ Let Pbe all pairs (M", 7)1~~~ "aixe My, e R}

+ of subspaces M” and o : T B

. extensions {" of fon M’. . L M) €E v

S LLEG s , \
LML) S (M7, ) N

— | < defines a partial |
. denotes that " is an g ol

. ) o , . order on P.
.+ extensionof > on M™".

Hausdorffs maximal theorem !

If P is nonempty and partially | ——— o

. I A - : 3 an extension
?xtd(;,iud. lclileu,dis lbnntu\lmal There'ts 5 nitial il
, sedlared Sulbset, -
QALY Drfeded Subse totally ordered ° :
. subset QcP. Suppose

\ lgll>0.
v

The functional

Suppose M* # X. |

l """"" ¥ g/l gl has norm 1.
! " A 3?.111 XUEX-M*. I & 2

' - R Qe A

", M* is a subspace of X. Vg Hen enloniiorn

v ;" N| 3 an extension F of f of g to M.
Jan extension F of { = thia?ayte {Ix{+7nx().
on M*: If xe M* BE A% R
.lhen }fe M’ flllff F(x) v \ iE G=0is an extension
1s defined as f*(x). 4_1 Q is not maximal. | of g=0.

There is an extension of f: a bounded real linear
functional F on X such that Flyy=fand W F Il = || [ II.

Example 3: Proof of the Hahn-Banach theorem, a fundamental result in functional analysis.

few times, the reader may be free to read backwards,
or to reconstruct the proof in another order. A conse-
quence of this and of advantage No. 1 above is that
the reader can faster separate the trivialities from the
difficulties, and concentrate upon real problems. Be-
cause of the visibility of the overall logical structure,
also the possibility of grasping a proof as a single idea
comes within closer reach.

3) More conceptually adequate. I claim that a picture of
this kind 1s really what one tries to construct in the
head when studying a mathematical theory.

search reports with very rudimentary natural lan-
guage. Mathematics takes then one step closer to-
wards being a truly international language, though a
language for a special purpose. Doors may open for
mathematicians who do not understand english, as is
often the case in developing countries. However, re-
ports completely free from natural language can
hardly be recommended, a supplementary text should
always join the graph. Natural language is required
for several reasons — one is to avoid disadvantage no 2
below.

5) Results first. If possible it is preferable to read a
mathematics course backwards: to start with the re-

4) More independent of natwral language. Logical
graphs make it possible to present mathematical re-
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' Let Mg be a non- :

Suppose Il gl = 1.

. trivial subspace of |
» X and g a linear ' v X
. functional on M,,.

e M: /

g(x) - gly) = g(x-y) < I x-yll < I x-xll + T y-xl

v

Jag g(x) - I x-xglt < ag < g(y) + 11 y-xgll,
vV xye M.

v

| Ig(x) - agl <1 x - xgll, VX € M. |

-,/

lg(AX) - Aagl ST Ax - Axgll, V x € M.

':xeMU?LeR} %l

4
lg(x) - Aagl < I x + Axgll, V x € M.

G(x+Axg) = g(x) + Aa,

v

‘forsome fixedae R, isa
. linear functional on M.

-

: IG(x+Axg)l = lg(x) + Aagl < T x + Axll, VX € M.

“ Finda e R

LsollGli=l,

‘lFGIIzl. '
v

o, — ™

3 an extension ot g to M.

Example 4. Remaining subproof of the Hahn-Banach theorem.

B C
A X7
A |/ [&
D
B c
M X
A |/— N
D

Example 5. Alternative notation for the propositions
AZB& C=Dand AvBv C=D,respectively.

sults and goals, and later tend to the construction of
the theory, being aware of the final results. This is ea-
sier to carry through in loglcal graph form, partly be-
cause of the constructions; it is easier to track down
definitions of unknown concepts to their well known
origins. It 1s an easier task to separate the unknown
from the known parts of the theory.

4. Disadvantages of logical graphs

1) Demands more of the reader. The advantage of more
freedom may also be a disadvantage. The reader must
make more decisions, e.g. where to start reading. Lo-
gical graphs offer a weaker leadership on the mathe-

matics tour. Graphic presentation can certainly be
used as a complement to narrative presentation.
However, more freedom ought to enhance the marur-
ity of the student.

2) Less method description. A narrative description of a
proof may contain information of mathematical
methods and ideas which have no formal significance,
but which is important for how to construct and de-
rive such results. The ultimate motivation for a cer-
tain definition 1s of course that it works. How to
choose definitions and find proof methods is a matter
of analogy, creativity, intuition; it is a matter “above”
strict mathematics. It should however be possible to
deliver such information in commentary nodes or in
supplementary text,

3) Lack of software, making the design of logical graphs
easy. The logical graphs in this article have been de-
signed with Framemaker 4.0.

5. Logical structure consistent with intution
Intuition, logic, learning. Certainly, a lot can be gained
for the future of mathematics if students easier grasp
our courses and researchers casier grasp new results.
Hard work will of course always be needed, with any
presentation method. However, with a presentation
which is consistent with intuition, it may be faster and
more rewarding. The main idea of logical graphs can be
described very shortly as a certain kind of laziness - to
avoid to restate a proposition or definition. When it
reappears, we instcad draW an arrow f['om it —a graph
results. At the same time the logical relationship can be
indicated.

Nodes for comments, graphics, applications... Logical
graphs can further be completed with more structure for
comments, such as indications of proof ideas, intuitive
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Definition 3

" A proof by contradiction is _i
a subgraph with exit node |
|
!

False, which validates the
converse of the assumption.

Definition 2

T A logical subgraph is a subgraph of a logical graph 0

which has one entrance proposition node and one
exit proposition node. In the entrance node an

assumption is stated, valid throughout the sub-
graph. The exit node contains a statement, valid
under the assumption. No implication may point
from a subgraph to the outside.

Border crossing rule: An implication may cross

ZDM 96/3

Deﬁmtlon 0

x is a predecessor of v 1t L

any number of boundaries, but every crossing must
take place from the outer side to the inner side.

______________ Jd
l | ity
(X yEA. o Definition | (Logical graphs)
________ A — s e e A T
: ) : A logical graph is a directed graph with nodes | l
Qcﬂm_gog 2 B ORI S = | of two kinds, propositions and definitions, and

| A directed graph D = (V,A)isa

finite set V and a relation A on |
VXV. The elements in V are called |
nodes, those in A are edges. |

r_ -~ . .
A relation A on a finite set V is
a subset of VXV, the set of all

I

l S

| edges of two kinds, implications and construc-
| tions. Each proposition node contains at least
| one statement. Each proposition node A repre- |
| sents the statement AjA..AA = A, where Ay, |
I ..., Ay are all implication precedessors of A. |
| Definition nodes contain no statements, but |
| introduces new notation. A construction edge |
| from node B, to the node C denotes that in C |
| some notation defined in B is explicitly used. |
[

No implication edge ends at a definition node. |

Example 6. Logical graphs as form and content.

connections, examples, geometrical plots and so on. The
reader can find some of such extensions in the provided
examples. Any further structure will however decrease
the visibility of the logical structure, so it should be well
motivated. Without doubt, graphic display of mathema-
tical 1deas occur and has occurred several times at various
instances and in various forms. This is an attempt to de-
fine natural, reliable and generally usable basic concepts.
The author has displayed about 15 graduate courses in
mathematics by logical graphs without problems.

6. A few words on logical graphs in teaching

Map of textbook. If logical graphs are made in conjunc-
tion with a specific textbook, enumeration and page
numbering can follow each theorem and lemma node.
This gives 2 map to the book, results and conceptual
connections are easier to find, as well as the structure of
the content.

What remains is understanding. Allowing theory graphs
at exams focuses on understanding. The formulation of
definitions and theorems is then provided, as well as im-
plications, 1.e. information about which results should be
used in the proof. What is not provided 1s proofs and so-
lutions to problems — then the natural subject of the
exam. This extra help for the students implies the possibi-
lity to include a few more topics in the course.
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Decode formalism. A condition for the student to be
able to use the theory graphs is clearly to understand the
mathematical formalism. The task for the student during
the course can then be described as to decode the theory
graphs, and lectures can attempt to bridge intuition and
formalism. Logical graphs probably also help memoriz-
ing — it is well known that detail knowledge survives
better once the role of details in an overall picture is un-
derstood.



